Phylogenetic and Transcriptional Analyses of a Tetrachloroethene-Dechlorinating "Dehalococcoides" Enrichment Culture TUT2264 and Its Reductive-Dehalogenase Genes.

نویسندگان

  • Hiroyuki Futamata
  • Shinichi Kaiya
  • Mariko Sugawara
  • Akira Hiraishi
چکیده

A dechlorinating microbial enrichment culture designated TUT2264 was cultured with tetrachloroethene and then characterized for tetrachloroethene-dechlorination by culture-dependent and -independent methods. The fourth-transferred TUT2264 culture completely dechlorinated tetrachloroethene and trichloroethene, and accumulated more trans-1,2-dichloroethene than cis-1,2-dichloroethene. A real-time PCR analysis revealed that "Dehalococcoides" cells made up only 0.3% of the total. Eight distinct reductive-dehalogenase-homologous genes (rdh) were detected with degenerate primers. Phylogenetic analyses revealed 5 of the 8 RdhAs to be very similar to RdhAs reported previously but not to share 100% identity. Transcriptional levels were quantified as the number of transcripts per rdhA by combining the reverse transcription real-time PCR and exogenous internal reference mRNA methods. TUT2264 responded to all the chloroethenes tested. rdhA4 was transcribed with all chloroethenes except vinyl chloride, whereas rdhA8 was only transcribed on tetrachloroethene. Furthermore, multiple rdhAs were induced to express by a single chloroethene as a growth-supporting or non-supporting substrate. These results suggested that Rdhs are multi-functional and rdhAs are a powerful tool to evaluate the potential of contaminated sites and isolates to dechlorinate chloroethenes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative analysis of three tetrachloroethene to ethene halorespiring consortia suggests functional redundancy.

Three anaerobic, dechlorinating consortia were enriched from different sites using methanol and tetrachloroethene (PCE) and maintained for approximately 3 years. These consortia were evaluated using chemical species analysis including distribution of dechlorination products, production of organic acids and methane, and using qualitative and quantitative PCR (qPCR), terminal restriction fragment...

متن کامل

Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes.

While many anaerobic microbial communities are capable of reductively dechlorinating tetrachloroethene (PCE) and trichloroethene (TCE) to dichloroethene (DCE), vinyl chloride (VC), and finally ethene, the accumulation of the highly toxic intermediates, cis-DCE (cDCE) and VC, presents a challenge for bioremediation processes. Members of the genus Dehalococcoides are apparently solely responsible...

متن کامل

Identification of Multiple Dehalogenase Genes Involved in Tetrachloroethene-to-Ethene Dechlorination in a Dehalococcoides-Dominated Enrichment Culture

Chloroethenes (CEs) are widespread groundwater toxicants that are reductively dechlorinated to nontoxic ethene (ETH) by members of Dehalococcoides. This study established a Dehalococcoides-dominated enrichment culture (designated "YN3") that dechlorinates tetrachloroethene (PCE) to ETH with high dechlorination activity, that is, complete dechlorination of 800 μM PCE to ETH within 14 days in the...

متن کامل

Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains.

The 16S rRNA gene provides insufficient information to infer the range of chloroorganic electron acceptors used by different Dehalococcoides organisms. To overcome this limitation and provide enhanced diagnostic tools for growth measurements, site assessment, and bioremediation monitoring, a quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes and three Dehalococcoides reductive ...

متن کامل

Temporal expression of respiratory genes in an enrichment culture containing Dehalococcoides ethenogenes.

Multiple reductive dehalogenase (RDase), hydrogenase (H2ase), and other respiration-associated (RA) oxidoreductase genes have been identified in cultured representatives of Dehalococcoides. Although their products are likely to play key roles in the environmentally important process of reductive dechlorination, very little information is available about their regulation and specific functions. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbes and environments

دوره 24 4  شماره 

صفحات  -

تاریخ انتشار 2009